近日,麥克馬斯特大學和哈佛大學的研究人員合作開發一個新平台,可以讓光束通過固體物質進行交流互動,這一研究爲新型計算機形式研發奠定了基礎。相關研究成果2月3日發表于美國《國家科學院院刊》。
A collaboration between McMaster and Harvard researchers has generated a new platform in which light beams communicate with one another through solid matter, establishing the foundation to explore a new form of computing. Credit: McMaster University
麥克馬斯特大學副教授Kalaich elvi Saravanamuttu一直致力于對光有反應的材料化學的研究。他表示,這項技術是在他的實驗室完成的,同時利用了哈佛大學研究團隊的光操縱和測量技術,最終制造出了一種半透明的水凝膠。
這種半透明的材料外觀上類似于樹莓果凍,物質組成上加入了對光敏感的分子,這些分子的結構在有光的情況下會發生變化,賦予凝膠特殊性質,既能容納光束,又能在光束之間傳遞信息。
一般來說,光束在傳播時會變寬,但是凝膠能夠沿著穿過材料的路徑包含激光細絲,就像光通過管道一樣。當多束激光束集中穿過同一種材料時,它們會影響彼此的強度,即便它們的光場完全沒有重疊。這一事實證明這種凝膠是“智能的”。
Saravanamuttu解釋說,這些光絲之間的相互作用可以被停止、啓動、管理和讀取,從而産生一種可預測的高速信息輸出,這是一種有潛力發展成無電路計算形式的信息形式。
“雖然它們是分開的,但光束仍然能看到彼此,並因此而改變,”她說,“我們可以想象,從長遠來看,這種智能響應可以計算操作。”
作爲該論文的第一作者之一,Saravanamuttu實驗室的研究生Derek Morim認爲,雖然光計算這個更廣泛的概念本身是一個獨立發展的細分領域,但這項新技術引入了一個有前途的平台。
“我們不僅可以設計在光存在下可逆轉換其光學、化學和物理性質的光響應材料,而且可以利用這些變化來創造光的通道,或自陷光束,以引導和操縱光,”他說,“進一步的研究可能讓我們設計更複雜的材料,以實現用特定的方式操縱光和材料。”
哈佛大學約翰·保尔森工程与应用科学学院的研究生Amos Meeks認爲,這項技術有助于推進全光計算的理念,即只用光束進行計算。
“目前大多數計算使用硬材料,如金屬線、半導體和光電二極管,將電子與光耦合。”該研究的第一作者之一Meeks說,“所有光學計算背後的想法是移除那些剛性組件,用光來控制光。想象一下,一個柔軟的、沒有電路的機器人,是由太陽光驅動的。”
來源: 中國科學報 付嵘,原文來源:https://phys.org/news/2020-02-intelligent-interaction-material.html
SP-modified hydrogels. (A) Photoisomerization scheme of chromophore substituents from the protonated merocyanine (MCH+, Left) to SP (Right) forms in the methylenebis(acrylamide) cross-linked p(AAm-co-AAc) hydrogel. (B) Photographs of chromophore-containing p(AAm-co-AAc) hydrogel monoliths employed in experiments. (C) UV-visible absorbance spectra demonstrating reversible isomerization of MCH+ (absorption λmax = 420 nm) to SP (λmax = 320 nm) in solution. (D) Experimental setup (Top) to probe laser self-trapping due to photoinduced local contraction of the hydrogel, schematically depicted on the Bottom (see also Movie S1). A laser beam is focused onto the entrance face of the hydrogel while its exit face is imaged onto a CCD camera.
Evolution of self-trapping in the SP-modified hydrogel; experiments and simulations. (A) Experimentally measured temporal evolution of peak intensity (blue) and effective width (red) of a laser beam (532 nm, 6.0 mW, with a width of 20 μm––corresponding peak intensity = 3.77 kW cm−2) acquired at the sample exit face; the beam is turned on at t = 0. Breaks in plots are time lapses between image logs. The experimental plots (dotted lines) are compared to numerical simulations (solid lines); the dashed black box above provides a zoomed-in view from 0 to 50 s, emphasizing the match between the experimental results and simulations. (B) Two-dimensional (2D) spatial intensity profiles experimentally acquired at select times. (C) Temporal evolution of beam width during self-trapping experiments at different optical powers. (D) Comparison of calculated and experimental values of minimum self-trapped beam width as a function of beam power.
原文翻譯自:PNAS,RESEARCH ARTICLE,Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions
Derek R. Morim, View ORCID ProfileAmos Meeks, Ankita Shastri, Andy Tran, Anna V. Shneidman, Victor V. Yashin, Fariha Mahmood, Anna C. Balazs, Joanna Aizenberg, and View ORCID ProfileKalaichelvi Saravanamuttu,
PNAS first published February 6, 2020 https://doi.org/10.1073/pnas.1902872117